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Abstract

The approach has been proposed for description of admixture diffusion in a body with a random nonhomogeneous
two-phase laminar structure. Jump discontinuities of diffusion coefficient have been taken into account at interphases as
well as equally probable distribution of random layers. Admixture concentration averaged over the ensemble of layer
configurations, has been obtained under consideration of medium nonhomogeneties as internal sources. © 2001

Elsevier Science Ltd. All rights reserved.

Random nonhomogeneities of real media affect es-
sentially on mass transfer processes. For accounting
their influence, as a rule, it is introduced an effective
diffusion coefficient [1,2]. However, it is known the cases,
for example multiphase systems with substantially dif-
ferent diffusion coefficients in phases, when introduction
and interpretation of experimental data on the basis of
such effective body characteristics are nonadequate [3].
The aim of this paper is, approach preparation to de-
scription of diffusion processes in a two-phase random
nonhomogeneous semispace of stratified structure
taking into account discontinuous jumps of a diffusion
coefficient on interphases.

Let admixture migrates in a stochastic-nonhomo-
geneous stratified body composed of two solid phases
with different densities (see Fig. 1). Diffusion coefficients
can differ essentially in these phases. We assume that
each phase is distributed by equally probable distribu-
tion in the body region. Let region VI-U) takes up i-layer
of j-phase, iis a layer number, i = 1,1, n; is a number of
J-kind layers.

For corresponding volumes we have

NtWh=V. (1)
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Here V; is the volume which j-phase occupies; V' is the
body volume.

Neglecting convection component of admixture
transfer, its diffusion in a random nonhomogeneous
two-phase stratified semispace is written in the form [4]

L(z,0)e(z,1) = p(2) aC(aZ; 7

— V[D(z)Ve¢(z, )] =0, (2)

where ¢(z,f) denotes admixture concentration in the
body, p(z) a random body density and D(z) is a random
diffusion coefficient, V = 0/0z . Let’s assume that body
density and diffusion coefficient are constant in the
volume of each phase.

Let a constant mass source acts on the boundary of
semispace referred to rectangular coordinates so that
Oz-axis is perpendicular to its surface z = 0:

c(z,t)

*
._o = ¢ = const,

and initial and boundary conditions are also given

c(z, 1)) =0, c¢(z,1)], =0. (3)

z—00

Let’s introduce into consideration random operator that
can be represented by unit step function

1, ze Vi(’)7

ny(z) = {07 : ¢ Vi(/’).

Then coefficients D(z) and p(z) in Eq. (2) are presented
by the random operator (4) as follows

)
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Fig. 1. One of possible realizations of a body structure.
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j=1 i=1 j=1 i=1

(5)

where D;, p; denote values of respective coefficients in
the j-phase. Let’s notice that

2

EZEZ% : (6)

j=1 i=

Relationship (6) imports body continuity. Substitute
coefficient representation (5) into Eq. (1) and allow for

that on interphases [4]
0 (z - zE) , (7)

where [D;] denotes a jump of diffusion coefficient on
boundaries of the i-layer of j-phase (V;”)), 8(z) is Dirac
delta-function, z is a boundary of subregion V; 0,

Then we obtam

2 nj

>3 v0ome) -3 3

j=1 j=1 i=

2

-3 Z Lz 0)c(z.1) = 0, (8)

j=1 i=1

where random operator L;; is

0 o?

Lij(z,1) = pjny(2) T Diny(z) 3 02 — [[D}];6(z — zyj)
— [D]);0(z = (2 + 92)))] % )

Here z; denotes the high boundary of the layer V,»m
(random variable); éz; is a characteristic (mean) width of
the j-phase layer.

Add and subtract deterministic operator L, (z,¢) de-
fined at all interval (z € [0; 00[, z € [0; 00[):

0 o
Ln(z,8) = ppy=— D=5, 10
(Z ) Pm ot 022 ( )
which coefficients are p,, = Zle v;p;, Dy = Z?:I v;D;
and v; is a volume fraction of the j-phase. Then allowing
for condition (6) we have

L,(z,t)c(z,t) = L}(z,1)c(z, 1), (11)
where
2 nj
Lm(Zt 71‘ Z Pm — p/ Z’/IU
Jj=1
2
_lzl: (D — D) Znu 622
2
- - )5(2 — i)
j=1 =1
. 0
+ (D1 = D;)0(z = (2 + 02)))] % (12)

We consider the right-hand side of Eq. (11) as a source,
i.e., medium nonhomogeneity is treated as internal
sources. The solution of initial-boundary value problem
(11), (3) is found in the form of Neyman series. Let
cm(z,t) is a deterministic function of admixture concen-
tration in the body with characteristics p,,, D,,. It satis-
fies following homogeneous equation

Li(z,8)cm(z,t) = 0, (13)

and initial-boundary conditions (3), i.e., [5,6]

enlz,1) = c*erfc{ 2\\//_%% } (14)

Write G(z,2') for unperturbed Green function satisfying

a diffusion equation for point source

. 0G(z,7) D, *G(z,7)
ot 0z2

— 5(z—2), (15)
and initial and boundary conditions

G(Z7 Z/)|,:() = 07 G(Z7 Z/)L:() = G(szl)|zaoc =0.

(16)

Using (11) we obtain the following integral equation for
random function of concentration c(z,¢) in the two-
phase stratified semispace

c(z,t) = cnlz,t) + /0ao G(z,Z)L};(Z, t)e(Z, 1) dZ. (17)

Neyman series for the problem (11), (3) is built by iter-
ating the integral equation (17)

c(z,t) = culz,t) + /OQ G(z,Z )L} (7 t)en(Z 1) dZ

/ / ()L, 0)G(E,2")

x L2 O)en(Z', 1) dZ d2" + . .. (18)

The first term of Neyman series (18) is the admixture
concentration c¢,,(z, ) in the homogeneous medium with
physical characteristics p,,, d,, . The second summand
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e = /0 T G (12, (19)

describes disturbances of the concentration field which
arise at the expense of availability of layers with other
physical characteristics in the body. In other words, al-
lowing for the form of the operator Ljj(z,¢) (12) we can
say that c'(z,¢) is a sum of concentratlon disturbances
and each of them arises when a layer with characteristics
p;» d; is placed in the homogeneous medium. Remark
that effects on boundaries of this layer are also taken
into account. The third summand in (18) can be pre-
sented in the form similar to (19):

Az,0) = /000 G(z, z’)L;;f(z/,t)cl(z'7 t)dz. (20)

It complies with that disturbances which arise if two
layers are placed in turn into the homogeneous medium,
i.e., c*(z,t) describes effects of pair influence of such
layers on the concentration field. The following sum-
mands have analogue interpretation.
The problem (15) and (16) was solved by integral
transformations. As a result we have obtained
T _
G=2) = 4p- e {lz+2]-1z=7]}
+ (z+2)erf (an(z + 2))
— (z—2)erf (an(z = 2))]

1 Tt 5 2 "2
- ~bu(z+2')" _ a=bum(z—7) ] 21
“3\/boy [e e 7 (1)

where a,, = \/p,,/(Dnt) and b,, = p,,/(4D,t).

For finding averaged field of admixture concentra-
tion (c(z, 1)) ue- let Neyman series (18) is restricted to the
first two terms:

c(z,t) men(z,t) + / Gz, )L (7 t)en(Z,0)dZ. (22)
0

If we substitute operator Lj;(Z',) defined by (12) into
Eq. (22) we obtain

G e+ [ G(z,z’@ > [0 - 0%
0a=0) 5 |22
+/O%G(z7z’)/2jl:§;[(D, D;_1)o(Z — zy)
- Dy~ DO 2y +0m)] S a (23)

Average random concentration field (22) over the en-
semble of layer configurations with equally probable
distribution. As ¢,(z,¢) is a deterministic function then
(em(z,8)) ot = Cm(z,t). Consider the first integral in (23).
So long as

0, Z/ ¢ [Zl'/';Zl'/‘ -+ 521}

1, Z—z;€[0;0z]
- {07 le g [0 52/] rlz/( Z,-/-),

, 1, Z €lzjzij+ 0z
’7ij( ) = { [z 2is il
(24)
only function #;,(z' — z;) depends on z; under the inte-

gral and there are not other terms with index #, then

2

) cont = /0 6.2 Z {(pm )ag;"

o%c,, ,
X 02 } — /11,/ — z;)dz;dz.

Taking into account the properties of function
nij(z’ — z;;) We can write

v, [oz;, 7' < 0z,
1’],j —Zjj dZ,j = v, 7> (3Zj.

Then we obtain
ac,,

2 oz;
conf Z/ [pm_pj)a_t
— (D, —D )62’2} dz/+ZUj/ (z,7)

(Dn — Dy)

e,

x {(Pm P

Consider averaging the second integral in (23). Since

functions 6(z' — z;) and 6(z' — (z; + dz;)) depend only

on a form and don’t depend on medium characteristics
then the correlative function equals zero. Then

([D],06E =) =([D)] ) (0 =20)) . (25)
At that

< [DJ 1">conf =
Averaging the second multiplier in formula (25) gives
1 &

7 0z — z;)dz; = 7 Z / 0(Z — z;) dz;

= Jv
_ Jv/oz, Z >0,
B { v;/(20z;), 2 =0. (27)

d
— (D, - D)) a""} dz.

D, — D;. (26)

Averaging the second summand with J-function is done
similarly. Then allowing for (25)—(27) and definition of
an improper integral we obtain

iD _py il Lg%
«,on / 2 Z aZI

J=1

+0z;
+ / G(z,7) aif dz}. (28)
+0 0z

2/ =0z;
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In consequence we obtain an expression for admix-
ture concentration averaged over the ensemble of layers
configurations in the two-phase stratified semispace

(e =enles) + 3 5 [ 622 (0,

¢,
_ pf')ﬁ _

n i:vj /oDC G(z,7) {(Pm J)) ot

=1

+0z; N
+ / G(z,7) %C; dz/}. (29)
+

The averaged function of admixture concentration is
obtained by substituting respective expressions for
Green function (21) and admixture concentration in the
homogeneous medium with average physical character-
istics (14) into formula (29)

1 T ady, ooz
; <C(Z7 t))conf erfc( "7Z> + Z { 8621dmt

X [e_’(}z+ 5zj’ - ‘z— 52/})

+ (z+ 0zj)erf (an(z + 92)))

2 o2
—(z— (5Zj)erf(am(z — 521.)) + \‘/1; {e—b,,,z(z+oz,)

—e ™7 4 0(z — z))

_ efbmt(z+<52,)2}:| + T[aPleit <l
4a,Dyy

—t

btz
— Boerf(v/b,dz)) i| m mexp(_ t >
x {Ayerf(x) — Azerf(xy) + v/merf(x3) }

1 1
SEp— ) R T
2/bn(1+1) ({bm 2}

1 2 2
+ {1 - 314 e+ 4Pze”‘3)

n |av; L
T

Here 6(z) is Heaviside function, d,; =d,—d,,
pmj = Pm— pf’ a2 = pm/(Tde)’

A = Uth’ £z +ﬁ L_Zit
TR R T C =y ey

Vn e
YT D —p —
2 TP T g

Ay = U N (R
((1+2) | 0z;(1+12) * 2bu \ 0z /b, (1+1)

N _vD, X
T Bimgytemem)
v;D
B, =z+ (mept 2)9(2—(521-),
v;D, 1z
P=22_1, Pb=—"—
Yo T (1)

x1 = 0z;\/bu(1 +1)(1 + P),

X, = 0z;\/ b, (1 +1)(1 — Py), x;z%az.

Here we use such designation:

0z;
A= flad e !
0

B=[ fi nde™"d;

Jdz;

0z
b= / f(z,7, t)efb’“zl2 dz/
0

where f(z,7Z,t) = (z + Z)erf(an(z + 2)) — (z — Z)erf
(an(z — 7).

Illustration of material nonhomogeneity influence on
distribution of admixture concentration in a semispace
under action of a constant source on the body boundary
is presented in Figs. 2 and 3 as an example of hydrogen
migration in composite Fe—Cu. The hydrogen diffusion
coefficients have been taken: in iron dg. = 1.8-

107" m?/s, in copper dc, =4.34-10""° m?/s and
Pre = 7.8 - 10° kg/m?, pc, = 8.93-10% kg/m? (T = 297
K). Full line marks, respective function for admixture
concentration averaged over layer configurations calcu-
lated by (30). Dashed line identifies admixture concen-
tration in homogeneous medium with averaged physical

1.8
1
1.2 5d
» -l 4 5¢ 5b
IASSS St
1— >\\ =
0 \ \

0.00 1.00 2.00 3.00 4.00

Fig. 2. Hydrogen concentration in Fe-Cu for different times.
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Fig. 3. Hydrogen concentration in Fe-Cu for different layer
widths of copper dzcy.

characteristics. Spatial value z (m) has been laid off as
abscissa, ratio of concentration H to power of constant
source working on the body surface ¢* has been laid off
as ordinate. Distributions of concentration are com-
pared in Fig. 2 for different moments of time at
Ozpe = 0.3 and dzc, = 0.1 . Here curve 1 (5a) is presented
for t =1.8-10" s, curve 2 (5b) shows concentration at
t=23.15-107 s, curve 3 (5¢) describes admixture con-
centration at = 5.3 - 107 s, and curve 4 (5d) is presented
for t = 7.45-107 s. Curves 5 describe concentrations in
the homogeneous body at the same moments of time.
Fig. 3 illustrates dependence of hydrogen concentration
on a width of copper layers under dzg. =0.1 m at
t=3.15-107 s . Here curve 1 shows function ¢(z,¢)/c*
under dzc, = 0.1 m. Curve 2 is presented concentration
H under dzc, = 0.07 m. Curve 3 describes averaged
concentration under dzc, = 0.05 m. Curve 4 shows de-
sired function under dzc, = 0.03 m and curve 5 de-
scribes ¢(z,t)/c* under 6zc, = 0.01 m.

Numerical analysis of obtained relationships shows
increase of hydrogen concentration in subsurface

domain of the body with stratified Fe—Cu-structure (see
2 and 3). We suspect that body domains where it is
observed increase of admixture concentration or its
abrupt decrease, are brought about by availability of
layers with critically greater diffusion coefficient. It is
occured admixture accumulation near one boundary of
a layer and abrupt fall in a vicinity of another.

Thus, for more adequate description of admixture
diffusion in two-phase stratified bodies it is necessary to
take into account both diffusive properties of each phase
and jump discontinuities of parameters at interphase
boundaries. Let’s note that an effective coefficient of
admixture diffusion can be introduced if the processes
are considered at small time intervals (for example,
t < 103-10* s for H transfer in Fe-Cu-structure de-
pending on a method of effective diffusion coefficient
introduction).
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